Skip to main content

Justin Whitehill

Department of Forestry and Environmental Resources (College of Natural Resources)

Assistant Professor, Christmas Tree Genetics Program

Partners Building II 2526

Bio

Dr. Whitehill leads the Christmas Tree Genetics (CTG) program, which is a research program housed in the Department of Forestry and Environmental Resources at North Carolina State University. The CTG program’s mission is to serve the tree breeding and Christmas tree genetic resource needs of the Christmas Tree industry in the state and nationally through coordinated research, extension and outreach activities. Our research leverages the disciplines of forest genetics, forest health, genomics, and chemical ecology to support the health, productivity, and long-term sustainability of the Christmas tree industry. The CTG program is responsible for research activities that engage participation from entities with interests in the long-term success of the Christmas tree industry including the North Carolina Department of Agriculture (NCDA), NC Christmas Tree Association (NCCTA), Eastern NC Christmas Tree Growers Association (ENCCTGA), North Carolina Forest Service (NCFS) and Christmas tree growers throughout NC. Research projects relate to developing novel genomics/genetic tools to screen tree genotypes and identify elite individuals with enhanced pest/pathogen resistance, climate resilience, aroma characteristics, needle retention and added value to the industry. Major research focus will be on gene and mechanism discovery to improve Christmas trees through genomic approaches. Addressed through projects of population genetics, host-pathogen/insect interactions, genomic resources, biochemical analyses, microscopy, and the CTG Fraser fir breeding program. Dr. Whitehill also serves as the Co-director of the Forest Biotechnology Group with Dr. Jack Wang at NC State University.

Professional Affiliations

  • American Society of Plant Biologists (2017-Present)
  • Entomological Society of America (2008-Present)
  • International Society of Chemical Ecology (2009, 2011, 2014)

Publications

View all publications 

Grants

Date: 01/01/22 - 12/31/25
Amount: $811,641.00
Funding Agencies: US Dept. of Agriculture - National Institute of Food and Agriculture (USDA NIFA)

Greenhouse, field, and AI optimization of germplasm for poplar and hemp are needed to address economic and environmental challenges to sustainable bioeconomies in the South's highland or mountain regions.

Date: 01/01/23 - 12/31/24
Amount: $176,219.00
Funding Agencies: US Dept. of Agriculture - Agricultural Marketing Service (USDA AMS)

This project will be a collaboration between the Christmas Tree Genetics Program and the Molecular Tree Breeding Lab in the Department of Forestry and Environmental Resources at North Carolina State University. Our goal is to accelerate the genetic improvement of Fraser fir against the important regulatory pest Elongate Hemlock Scale (EHS). Fraser fir is one of North Carolina’s most important specialty crops generating annual revenues exceeding $100 million. The development of novel genomic tools and technologies will have a positive, transformative impact on the North Carolina Christmas tree industry. Our project builds on resources developed by the NCSU Christmas Tree Genetics Program in collaboration with the NCDA and NC Christmas tree growers over the past 4+ decades. We propose four major objectives in this proposal: (1) evaluation of genetic variability in Fraser fir and select Abies spp. response to Elongate Hemlock Scale infestation; (2) histological evaluation of EHS feeding on Fraser fir and Abies spp. foliage; (3) biochemical and molecular response of Abies spp. to Elongate Hemlock Scale infestation; (4) development of molecular resources to identify defense characteristics of EHS resilient Abies genotypes; and (5) synthesis and dissemination of results to NC Christmas tree stakeholders. Subsequent to the funding period, these efforts will benefit the North Carolina Christmas tree community and contribute to the genetic conservation of native Fraser fir populations in the Appalachian Mountains. We expect project deliverables will help address key knowledge gaps of pest resilience in Fraser fir and push conventional conifer breeding strategies and integration with genomic information into a new era.

Date: 01/01/22 - 12/31/23
Amount: $125,000.00
Funding Agencies: US Dept. of Agriculture - Agricultural Marketing Service (USDA AMS)

This project will be a collaboration between the Forest Biotechnology Group in the Department of Forestry and Environmental Resources and the Forest Restoration Alliance in the Department of Entomology and Plant Pathology at North Carolina State University. We propose a integrative approach to understanding the genetic response to hemlock woolly adelgid (HWA) infestation in susceptible and resistant hemlock species, and how these genetic regulations are transduced to alterations in phenotypic traits associated with HWA susceptibility. The proposed project builds upon ongoing research in developing a CRISPR genome editing system for hemlocks funded by the SCBGP in 2020-21. Comparative transcriptomics and phenomics of hemlock variants with varying extent of HWA susceptibility will produce genetic insights that facilitate identification of candidate gene targets for editing using CRISPR-Cas to enhance HWA resistance. This project will focus on four key objectives: (1) controlled HWA infestation in putatively susceptible and resistant genotypes of hemlock species, (2) assessment of phenotypic response to infestation in hemlocks, (3) full transcriptomic analysis of hemlock response to HWA infestation, and (4) integration of transcriptomic and phenotypic responses to identify putative gene targets associated with HWA resistance. The putative genes identified in this project will be targeted for hemlock genome editing in a subsequent research that is beyond the scope of this project period.

Date: 01/01/22 - 12/31/23
Amount: $150,000.00
Funding Agencies: US Dept. of Agriculture - Agricultural Marketing Service (USDA AMS)

This project will be a collaboration between the Christmas Tree Genetics Program, the Forest Health and Conservation Program, and the Molecular Tree Breeding Lab in the Department of Forestry and Environmental Resources at North Carolina State University. Our goal is to accelerate the genetic improvement of Fraser fir against the tree-killing pathogen Phytophthora root rot and insect pest balsam woolly adelgid. Fraser fir is one of North Carolina’s most important specialty crops generating annual revenues exceeding $100 million. The development of novel genomic tools and technologies will have a positive, transformative impact on the North Carolina Christmas tree industry. Our project builds on resources developed by the NCSU Christmas Tree Genetics Program in collaboration with the NCDA and NC Christmas tree growers over the past 4+ decades. We propose five major objectives in this proposal: (1) genomic resource development of Fraser fir responses to Phytophthora and BWA; (2) identification of Phytophthora and BWA elicitors; (3) evaluation of Fraser fir responses to isolated elicitors; (4) population level analysis of key pest responsive genes in existing NCSU Fraser fir breeding program resources; and (5) synthesis and dissemination of results to NC Christmas tree stakeholders. Subsequent to the funding period, these efforts will benefit the North Carolina Christmas tree community and contribute to the genetic conservation of native Fraser fir populations in the Appalachian Mountains. We expect project deliverables will help address key knowledge gaps of pest resilience in Fraser fir and push conventional conifer breeding strategies and integration with genomic information into a new era.

Date: 03/31/21 - 9/30/23
Amount: $2,800.00
Funding Agencies: Institute of Museum & Library Services

The Center for Plant Conservation received a grant from the Institute for Museum and Library Services (IMLS) for a project entitled, “RNA integrity as a powerful metric of aging in preserved seed collections of wild rare plant species” (MG-245983-OMS-20). To satisfy grant commitments, CPC has the need for a subcontractor to collect a “fresh accession” of rare plant seed from the same wild population previously collected 15 years ago or more and subsequently preserved in orthodox seed storage. The older seed accession currently in orthodox storage will hereafter be known as the “original accession”. Contractor represents that they are able and willing to undertake this work. As the contractor, NC State University will make one “fresh” seed collection from populations of Fraser fir (Abies fraseri) in western North Carolina. Fresh collections will either be made from the same population as the “original accessions”; from ex-situ plants of shared wild provenance; or from plants grown or bulked from seeds of a seed collection held in long term storage for 15 years or more – known as the “original accession.” The specific quantity of seed required for testing may vary depending on the size of seed and inclusion in the different experimental groups. Seed quantities for target species are the estimated quantity of seed needed to achieve 75mg of material plus 100 seeds for a germination trial. The bolded species will need multiple 75mg replicates from the freshly collected accession for inclusion in an advanced aging study.


View all grants