Skip to main content

Jordan Kern

College of Natural Resources

Assistant Professor

Jordan Hall Addition 3219

Bio

Stochastic modeling of coupled natural-human systems in order to: 1) improve understanding of emergent risks to people and the environment across sectors and scales; and 2) develop novel approaches for mitigating these vulnerabilities.

Education

Ph.D. Environmental Sciences and Engineering University of North Carolina-Chapel Hill 2014

M.S. Environmental Sciences and Engineering University of North Carolina-Chapel Hill 2010

B.S. Environmental Sciences University of North Carolina-Chapel Hill 2007

Publications

View all publications 

Grants

Date: 08/01/22 - 7/31/27
Amount: $413,671.00
Funding Agencies: National Science Foundation (NSF)

This proposed work will weave together new and existing knowledge about natural hazards, power systems, and financial/economic markets in order to explore interdependencies and feedbacks between the U.S. power sector’s efforts to manage extreme weather and reduce greenhouse gas emissions. Research efforts will focus on developing a deep understanding of system dynamics in different testbeds distributed across the U.S. These testbeds will facilitate investigation of how regional differences in natural resources, climate, infrastructure, and human institutions shape interactions between extreme weather and decarbonization efforts. The unifying thread throughout, and the major research objective of this proposal, is the development and application of a systems analysis framework for resilient and robust management of weather risk in grids transitioning to renewable energy.

Date: 10/01/21 - 9/30/26
Amount: $9,999,146.00
Funding Agencies: National Science Foundation (NSF)

The Science and Technologies for Phosphorus Sustainability (STEPS) Center is a convergence research hub for addressing the fundamental challenges associated with phosphorus sustainability. The vision of STEPS is to develop new scientific and technological solutions to regulating, recovering and reusing phosphorus that can readily be adopted by society through fundamental research conducted by a broad, highly interdisciplinary team. Key outcomes include new atomic-level knowledge of phosphorus interactions with engineered and natural materials, new understanding of phosphorus mobility at industrial, farm, and landscape scales, and prioritization of best management practices and strategies drawn from diverse stakeholder perspectives. Ultimately, STEPS will provide new scientific understanding, enabling new technologies, and transformative improvements in phosphorus sustainability.

Date: 10/01/20 - 9/30/24
Amount: $170,000.00
Funding Agencies: US Dept. of Energy (DOE)

The overarching goal of the proposed research tasks for the NCSU team in Phase 2 of IM3 is to help develop new, open source operational models of the U.S. bulk electric power system, one for each of the three regional interconnections: the Western Electricity Coordinating Council (WECC); the Electric Reliability Council of Texas (ERCOT); and the Eastern Interconnection (EIC). These models will then be used by NCSU and other members of the IM3 team to address the impacts of weather and water dynamics in the simulation of grid operations in Experiment Groups B and D as described in the IM3 Phase 2 proposal

Date: 10/01/19 - 9/30/24
Amount: $300,000.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

Concerns over depleting oil reserves and national security have spurred renewed vigor in developing bio-based fuels. A variety of feedstocks, conversion technologies, and biobased refinery concepts have been proposed and are being investigated. The viability of these systems is typically quantified through sustainability assessments. Current work has focused on the assessment of technologies either based on economic viability or environmental impact but typically not concurrently. Further, there has been minimal work in the area of biorefinery optimization. The proposed work will develop a unique toolset that is capable of identifying promising production pathways as well as performance targets for biobased energy and co-product systems. The foundation of the work is a modular engineering process model that captures the performance of various feedstock production systems, conversion technologies, and end use. This foundation is coupled with techno-economic, life cycle and resource demand modeling to understand the sustainability of the various production pathways. The work includes the novel coupling of economics and environmental impact through integration of a social cost of carbon such that a more holistic assessment can be performed.

Date: 08/27/20 - 8/26/23
Amount: $345,444.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

We will develop a framework for characterizing the uncertainty on the performance of electric power system’s assets and for using that uncertainty characterization in the operations of electricity markets (including scheduling, dispatch, pricing,and settlement). We will focus on the uncertainty of bulk renewables (wind farms, solar PV farms, and hydropower) w/o energy storage systems, but will also consider smaller scale renewables in the system that are either directly participating in wholesale markets, or behind-the meter, impacting load.


View all grants