Skip to main content

Carole Saravitz

Research Associate Professor; Phytotron Director

Phytotron 2003

Bio

At the NCSU Phytotron, we are involved in the design and implementation of phytotronics studies  to solve controlled environment problems as well as testing of controlled environment innovations. Increased energy efficiency is a main focus of current research projects. Current interests include development of LED light protocols that provide optimal growth of a wide variety of plants including common crop plants such as corn, soybean, cotton and horticultural crops such as cucumber and tomato.

Area(s) of Expertise

Phytotronics, LED lighting, Hydroponic

Publications

View all publications 

Grants

Date: 06/30/22 - 6/29/23
Amount: $18,753.00
Funding Agencies: NC Biotechnology Center

Our goal is to establish a novel microspore culture system to generate homozygous Double Haploid (DH) inbred lines for tomato breeding and genomic community. We expect the knowledge and technology generated in the proposed research will put NC in a technical competitive position for tomato breeding, the technology will be translational to other economically important crops that are currently not amenable to double haploid production.

Date: 05/03/21 - 5/02/23
Amount: $150,000.00
Funding Agencies: NC Biotechnology Center

The NCSU Phytotron is a premier growth facility that serves the NCSU community, as well as other NC academic institutions and NC companies of various sizes. The Phytotron has always maintained a high-level of precision in regulating environmental conditions. The facility is now more than 50 years old and after many years of heavy use, it has required major renovations and upgrades to keep up with research needs. We were able to conduct an extensive energy conservation project with the NCSU Facilities group to upgrade the growth chambers, as well as the heating, cooling and electrical systems of the Phytotron. During the renovation process we lost precision in controlling the environmental variables of the Phytotron greenhouses. Facilities with a high level of precision in environmental control are necessary for securing research funds, conducting repeatable experiments and enhance graduate student performance. We seek to install a state-of-the-art control system that can be used to not only allow us to precisely control the environmental conditions of the greenhouses but would also increase our capabilities including use of the specialized moisture sensing and weighing system that was donated by Syngenta to the NCSU Horticultural Science Department and requires an Argus system to function. The Argus system that we are requesting would provide state-of-the-art environmental control that is not currently available in any of other plant growth areas at NCSU and would provide the Phytotron with a system similar to the ones used at state-of-the-art growth facilities in RTP. It would also allow connectivity between the Phytotron and the new Plant Sciences building that is being constructed on NCSU’s Centennial Campus.

Date: 01/01/22 - 12/31/22
Amount: $40,000.00
Funding Agencies: Cotton, Inc.

The demand placed currently on fiber production globally requires greater advances in genetic improvement in cotton. A crucial step towards long-term genetic enhancement of the cotton crop hinges on rapid generation of inbred lines from segregating populations with stable phenotypes which allows the identification of a small subset of elite breeding lines with superior agronomic and quality traits. To date, this process is accomplished via repeated selfing following the pedigree breeding approach. The availability of a double haploid (DH) system to quickly carry segregating lines to complete homozygosity would be transformative in cotton breeding by eliminating the need of selfing to achieve homozygosity, hence significantly reducing the breeding cycle to increase genetic gain. A major goal of the NC State University Plant Transformation Lab, with it’s new director Dr. Da, is to develop enabling plant propagation and genome editing technologies for crop improvement. In this proposed research, the objectives are to 1) evaluate cotton genotypes for their androgenesis potential, 2) study microspore development stages and flower bud pretreatment condition optimization for androgenesis, 3) test different basal medium combination with various growth regulators on cotton androgenesis, and 4) test colchicine effect on cotton haploid chromosome doubling. Combined, these experiments will take a multi-faceted approach to develop a DH production system in cotton. We expect the development of robust DH system will have immediate utility and value for QTL mapping, conventional and molecular breeding by using advanced technologies and approaches such as genomic selection. Ultimately, these efforts will enhance the diversity, profitability, and sustainability of US cotton production.

Date: 01/01/17 - 6/30/22
Amount: $2,996,668.00
Funding Agencies: National Science Foundation (NSF)

The objective of this research is to develop semi-transparent organic solar modules integrated with greenhouses along with engineered plant photo-action spectra that synergistically provide food and energy sources while conserving water for a new food-energy-water paradigm.

Date: 01/01/16 - 6/30/17
Amount: $52,500.00
Funding Agencies: Center for Produce Safety

The die-off kinetics of virulent strains of EHEC and STEC microorganisms are not well characterized under different ag-environments. Multiple studies have used currently available surrogates of these pathogens in an attempt to predict pathogen survival and persistence on the surface of plants, in soil and irrigation water with limited success. Major obstacles in this effort are 1) lack off open field environments or greenhouse facilities where researchers could make direct comparisons of the survival and persistence of these strains without compromising the health of research personnel 2) spread and persistence of these high risk pathogens in to the environment following plant/soil inoculation studies and 3) the potential to over or underestimate their persistence in ag-environments. Despite these limitations the outcomes of multiple studies have been used by FDA as part of their decision process to develop the new Produce rules (PR) within the FSMA and to adopt the 2012 EPA microbial standards for recreational water as the standards for irrigation water. Current guidelines require surface water that will be used in direct contact with the edible portion of the crop to meet a rolling Geometric Mean of 126 CFU/100ml and a Statistical Threshold Value of 410 CFU/100ml of generic E. coli. Alternative provisions when surface water exceeds these standards include the use of a microbial die-off rate of 0.5 Log per day that may occur naturally in the field between irrigation events and harvest or via postharvest intervention. Despite these potentially useful alternative, there needs to be science-based information to support this option; especially when multiple crop specific and environmental factors significantly alter targeted die-off rates of human pathogens. Strawberry and Cilantro maybe be significantly impacted by this provision since 1- in Eastern strawberry production surface waters are frequently used for frost protection close to harvest and lack further postharvest commercially available disinfection steps 2- in Cilantro frequent sprinkler irrigation events close to harvest coupled with hand harvesting practices and the use of hydrocooling and flume systems impact harvestable yields and postharvest quality. All these practices could increase the risk of pathogen contamination/dissemination along the supply chain. Preharvest intervention strategies for cilantro and strawberry could be the most reasonable and cost effective mitigation steps that growers could adopt to significantly reduce pathogen persistence to non-detectable levels. The use of chlorine and peroxyacetic acid (PAA) via the irrigation system or as crop protection sprays coupled with the proposed die-off rates could provide the necessary levels of control proposed by the rules. The present concept proposal looks to utilize BSL3 greenhouse conditions to determine and compare side by side the die-off kinetics of surrogate and pathogenic strains of E. coli O157 and non STEC 0157 from the surface of strawberry and cilantro with and without the application of chlorine or PAA to establish whether a combination of these approaches could provide the targeted microbial die-off rate of 0.5 log per day as proposed by the PR.


View all grants