Ross Whetten
Professor
Forestry and Environmental Resources Department, NC State
Biltmore Hall (Robertson Wing) 1019B
Area(s) of Expertise
Genomics, Plant Breeding, Transcriptome Analysis, Genotype-by-Environment Interaction, Chromatin Structure
Publications
- Genomic predictions and candidate single nucleotide polymorphisms for growth, form, and wood properties of teak clones , SILVAE GENETICA (2024)
- Metagenomic study reveals hidden relationships among fungal diversity, variation of plant disease, and genetic distance in Cornus florida (Cornaceae) , FRONTIERS IN PLANT SCIENCE (2024)
- Stem Defect Rates and Ice Storm Damage for Families of Pinus taeda from Coastal and Piedmont Provenances Planted on a North Carolina Piedmont Site , FOREST SCIENCE (2024)
- Analysis of Gene Expression Differences Between Eastern and Western Loblolly Pine Seed Sources , (2023)
- Genomic Tools in Applied Tree Breeding Programs: Factors to Consider , FORESTS (2023)
- Identification and high-throughput genotyping of single nucleotide polymorphism markers in a non-model conifer (Abies nordmanniana (Steven) Spach) , SCIENTIFIC REPORTS (2023)
- Microbiome and plant cell transformation trigger insect gall induction in cassava , FRONTIERS IN PLANT SCIENCE (2023)
- Transcriptomic Prediction of Breeding Values in Loblolly Pine , (2023)
- Two pathogen loci determine Blumeria graminis , New Phytologist (2023)
- A genome‐wide SNP genotyping resource for tropical pine tree species , Molecular Ecology Resources (2021)
Grants
I am proposing to request funds to support a post-doc and sequencing costs associated with genome sequencing of Fraser fir.
This project will be a collaboration between the Christmas Tree Genetics Program and the Molecular Tree Breeding Lab in the Department of Forestry and Environmental Resources at North Carolina State University. Our goal is to accelerate the genetic improvement of Fraser fir against the important regulatory pest Elongate Hemlock Scale (EHS). Fraser fir is one of North Carolina������������������s most important specialty crops generating annual revenues exceeding $100 million. The development of novel genomic tools and technologies will have a positive, transformative impact on the North Carolina Christmas tree industry. Our project builds on resources developed by the NCSU Christmas Tree Genetics Program in collaboration with the NCDA and NC Christmas tree growers over the past 4+ decades. We propose four major objectives in this proposal: (1) evaluation of genetic variability in Fraser fir and select Abies spp. response to Elongate Hemlock Scale infestation; (2) histological evaluation of EHS feeding on Fraser fir and Abies spp. foliage; (3) biochemical and molecular response of Abies spp. to Elongate Hemlock Scale infestation; (4) development of molecular resources to identify defense characteristics of EHS resilient Abies genotypes; and (5) synthesis and dissemination of results to NC Christmas tree stakeholders. Subsequent to the funding period, these efforts will benefit the North Carolina Christmas tree community and contribute to the genetic conservation of native Fraser fir populations in the Appalachian Mountains. We expect project deliverables will help address key knowledge gaps of pest resilience in Fraser fir and push conventional conifer breeding strategies and integration with genomic information into a new era.
Loblolly pine is the most abundant commercially grown tree species in North Carolina with over 100,000 acres of pine plantations established each year in the state. In addition to the conventional forest products industry, loblolly pine serves as a promising source for renewable energy in the form of woody biomass. Large genetic differences exist for growth, disease resistance, and stem form. By planting genetically superior trees with desirable traits, it may be possible to substantially increase the amount and quality of biomass produced at a given site. The goal of this project is to evaluate different planting stock (families) in combination with different thinning regimes in order to inform forest landowners how best to maximize their returns when supplying both the bioenergy and sawtimber markets. This project was initiated in 2012, with the planting of a high spacing density (1037 trees/acre) long-term field trial in the NC Piedmont. The trial includes 10 of the best Coastal and 10 of the best Piedmont families with varying degrees of adaptation, growth, and wood characteristics. Different thinning regimes will be explored using eight year measurements, and the predicted financial returns from the thinnings as well as projected sawtimber production will be evaluated.
This project will be a collaboration between the Christmas Tree Genetics Program, the Forest Health and Conservation Program, and the Molecular Tree Breeding Lab in the Department of Forestry and Environmental Resources at North Carolina State University. Our goal is to accelerate the genetic improvement of Fraser fir against the tree-killing pathogen Phytophthora root rot and insect pest balsam woolly adelgid. Fraser fir is one of North Carolina������������������s most important specialty crops generating annual revenues exceeding $100 million. The development of novel genomic tools and technologies will have a positive, transformative impact on the North Carolina Christmas tree industry. Our project builds on resources developed by the NCSU Christmas Tree Genetics Program in collaboration with the NCDA and NC Christmas tree growers over the past 4+ decades. We propose five major objectives in this proposal: (1) genomic resource development of Fraser fir responses to Phytophthora and BWA; (2) identification of Phytophthora and BWA elicitors; (3) evaluation of Fraser fir responses to isolated elicitors; (4) population level analysis of key pest responsive genes in existing NCSU Fraser fir breeding program resources; and (5) synthesis and dissemination of results to NC Christmas tree stakeholders. Subsequent to the funding period, these efforts will benefit the North Carolina Christmas tree community and contribute to the genetic conservation of native Fraser fir populations in the Appalachian Mountains. We expect project deliverables will help address key knowledge gaps of pest resilience in Fraser fir and push conventional conifer breeding strategies and integration with genomic information into a new era.
Plant breeding is beginning to incorporate new tools based on genomic resources and methods, although the rate of availability and adoption of new tools and resources varies from species to species. Loblolly pine (Pinus taeda L.), the most-planted timber crop species in the United States, now has a draft sequence assembly of the 23-billion-basepair genome, and researchers are actively seeking ways to exploit this resource for purposes of applied breeding. The objective of this proposal is to test the hypothesis that specific regions of the pine genome are enriched in sequence variants that affect phenotype, and therefore have practical value for applied pine breeding purposes. A variety of methods will be used to add value to the current draft assembly, with the goal of creating a more useful resource for pine breeders to use in increasing the productivity and adaptability of loblolly pine. Preliminary data showing the feasibility of each of these methods in loblolly pine are available. The same or similar methods could be applied to other agricultural species, so benefits of this research will extend to crop and livestock breeders.