Jack Wang
Assistant Professor
College of Natural Resources
Partners Building II 2514
Publications
- Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa , NATURE PLANTS (2023)
- Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth , BIORESOURCE TECHNOLOGY (2023)
-
Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis
, BIORESOURCE TECHNOLOGY (2022) - Dimerization of PtrMYB074 and PtrWRKY19 mediates transcriptional activation of PtrbHLH186 for secondary xylem development in Populus trichocarpa , NEW PHYTOLOGIST (2022)
- Enhancing HR Frequency for Precise Genome Editing in Plants , FRONTIERS IN PLANT SCIENCE (2022)
- p A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa , PLANT COMMUNICATIONS (2022)
- A multiscale model of lignin biosynthesis for predicting bioenergy traits in Populus trichocarpa , COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL (2021)
- CRISPR-Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula x P. alba , PLANT BIOTECHNOLOGY JOURNAL (2021)
- Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa , FRONTIERS IN PLANT SCIENCE (2021)
- Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose , Environmental Microbiology Reports (2021)
Grants
This project will be a collaboration between the Forest Biotechnology Group in the Department of Forestry and Environmental Resources and the Forest Restoration Alliance in the Department of Entomology and Plant Pathology at North Carolina State University. We propose a integrative approach to understanding the genetic response to hemlock woolly adelgid (HWA) infestation in susceptible and resistant hemlock species, and how these genetic regulations are transduced to alterations in phenotypic traits associated with HWA susceptibility. The proposed project builds upon ongoing research in developing a CRISPR genome editing system for hemlocks funded by the SCBGP in 2020-21. Comparative transcriptomics and phenomics of hemlock variants with varying extent of HWA susceptibility will produce genetic insights that facilitate identification of candidate gene targets for editing using CRISPR-Cas to enhance HWA resistance. This project will focus on four key objectives: (1) controlled HWA infestation in putatively susceptible and resistant genotypes of hemlock species, (2) assessment of phenotypic response to infestation in hemlocks, (3) full transcriptomic analysis of hemlock response to HWA infestation, and (4) integration of transcriptomic and phenotypic responses to identify putative gene targets associated with HWA resistance. The putative genes identified in this project will be targeted for hemlock genome editing in a subsequent research that is beyond the scope of this project period.
A project to determine the lignin content and composition of ~10 plant samples (primarily endocarp) to inform genetic strategies for reducing or eliminating lignin in stone fruits.
The Equipment Grants Program (EGP) serves to increase access to shared special purpose equipment for scientific research for use in the food and agricultural sciences programs in our Nation’s institutions of higher education, including State Cooperative Extension System
The purpose of the Consortium on Sustainable and Alternative Fibers Initiative (SAFI) is to develop fundamental and applied research on the use of alternative and sustainable fibers for the manufacturing of market pulp, hygiene products and nonwovens. The idea for SAFI has grown out of societal needs for alternative yet sustainable materials. SAFI will study the potential of alternative fibers based on technical (performance), sustainable and economic principles. This enhancement project aligns with the goals and mission of SAFI and aims to harbor novel genome editing technologies to advance the development of new fiber feedstocks with unique properties to improve pulp production.
This project will be a collaboration between the Forest Biotechnology Group and the Christmas Tree Genetics Program in the Department of Forestry and Environmental Resources at North Carolina State University. Our goal is to develop novel CRISPR-based genome editing technology that would accelerate the genetic improvement of Fraser fir. The proposed technology would enable the rapid production of new variants of Christmas trees edited for traits of ecological and economic values such as disease tolerance and post-harvest quality. Fraser fir is one of North Carolina’s most important specialty crops. Developing novel genomic tools and genome editing technology for Fraser fir will have a transformative impact on the North Carolina Christmas tree industry. This project builds on our recently established somatic embryogenic system and cell transfection method for Fraser fir (funded by SCBGP in 2018), which lay the foundation for optimizing efficient and robust CRISPR-Cas9 delivery and regeneration of enhanced Fraser fir from genome-edited somatic embryos. We propose three major objectives in this proposal: (1) Optimize the delivery of CRISPR-SpCas9 in Fraser fir somatic embryogenic protoplasts: we will test several experimental parameters to maximize transfection efficiency; (2) Regenerate and maturate CRISPR-SpCas9 edited protoplasts into Fraser fir plantlets: we will optimize an integrated protocol for regeneration and maturation of CRISPR-edited protoplasts originated from Fraser fir SE; (3) Validation of target gene editing in regenerated Fraser fir plantlets: we will genotype CRISPR-driven editing events in the regenerated fir plantlets. Subsequent to the funding period, the transgene-free CRISPR-based SE system will be used to edit superior clonal seedlings for Christmas tree field trials in the North Carolina Mountains.