

Economics of Soil Health Practices

Cover Crops and No-Till

Rod M. Rejesus

Professor and Extension Specialist

Dept. of Ag. and Resource Economics

NC State University

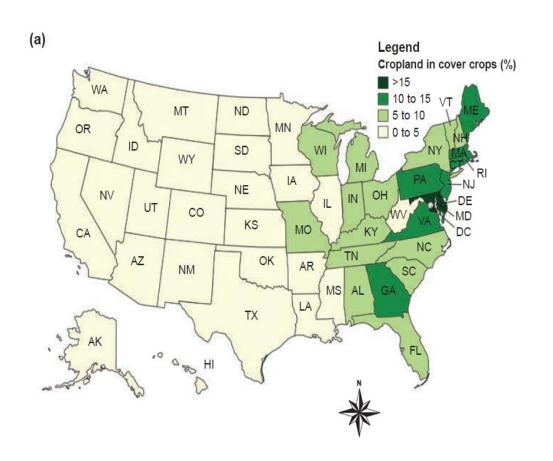
Goals for Today

- Soil health practice adoption in the US
 - Cover crop and no-till
- Important economic dimensions to consider when deciding to adopt
- General findings from economic literature
- Policy discussions & issues

Introduction

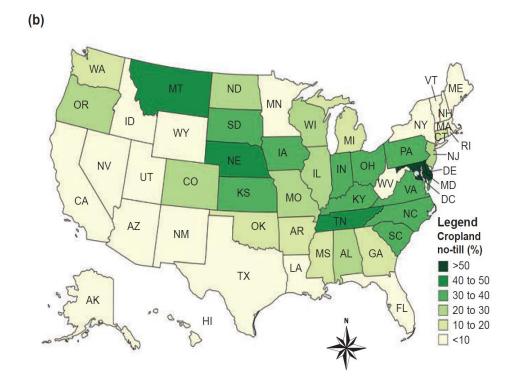
 Soil health is now viewed as a key element in enhancing agricultural productivity, environmental sustainability, and food system resilience

- Natural climate solution since ↑ C in soils
- Strong interest in promoting practices that improve soil health:
 - Cover crops and no-till systems



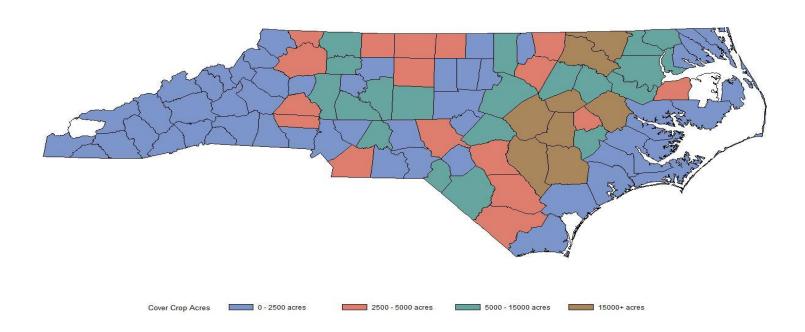
Cover Crop Adoption

 Cover crop adoption % in 2017 is ~4% of total cropland acres

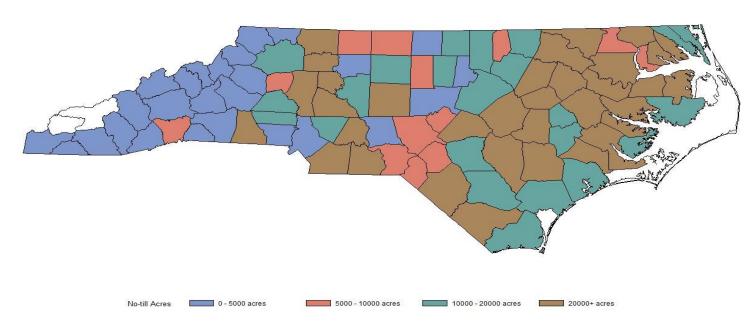


No-till Adoption

 No till adoption % in 2017 is ~37% of total cropland acreage



2017 NC cover crop acres


- Mean cover crop acres per county is ~4,966 acres
 - About 10% adoption rate (based on ~50k cropland acres per county)

2017 NC no-till acres

- Mean no till acres per county is ~19,656 acres
 - About 39% adoption rate (based on ~50k cropland acres per county)

Economic Dimensions

- To promote further adoption of these soil health practices, these practices have to make "economic sense" to individual farmers
- Policy makers also need to understand the economics of adoption to better design policies to encourage further adoption if needed
- A framework that lays out the economic dimensions that affect adoption and impact of soil health practices is important

Economic dimensions of soil health management practice decisions.

Туре	Potential benefits (revenue increasing or cost decreasing)	Potential costs (revenue decreasing or cost increasing)
Private	Agronomic:	Agronomic:
(e.g., individual)	 Increased yields (and revenues) 	 Increased cover crop seed costs
	Reduced fertilizer expenses	 Increased labor and machinery cost (e.g., for planting
	Reduced fuel cost (in no-till)	cover crops)
	Better resilience to extreme weather events	 Increased herbicide costs (e.g., for cover crop termination
	Yield stability over time	and weeds in no-till systems)
	Grazing opportunities (from cover crops)	Decreased yield (e.g., if delayed planting due to delayed
	Environmental:	cover crop termination, among other reasons)
	Reduced soil erosion in farmer fields	Opportunity cost of labor for planting cover crops in the winter
	Decreased soil compaction	Decreased moisture available for cash crop (after planting
	 Reduced nitrogen and phosphorus losses increasing 	cover crops)
	nutrient use efficiency	 May recruit unwanted wildlife (for cover crops)
	Better moisture retention in-season	Environmental:
		• None
External	Agronomic:	Agronomic:
(e.g., societal)	 Reduced pest and disease outbreak incidence (e.g., due 	 Increased pest or disease incidence for neighbors due to
	to beneficial insects)	cover crops being a possible host
	Environmental:	Environmental:
	 Reduced soil erosion on landscape 	• None
	 Carbon sequestration (e.g., cover crops or no-till remove 	
	carbon dioxide from the air and store it in the form of carbon	n
	in the plant and/or soil)	
	• Improved water quality (e.g., from reduced nitrate leaching)	
	• Increased biodiversity (e.g., better environment for beneficia	I
	insects and pollinators)	

Economic Dimensions

- Without subsidies, farmers bear the cost of adopting cover crops, but benefits are received both by farmers and society
- This "mismatch" implies potential underprovision of soil health benefits
 - Farmers only adopt commensurate to their net private benefits (not considering the environmental benefits)
 - This "market failure" suggests likely role for public policy
 - Internalize the external soil benefits for optimal societal provision

Economic Dimensions

- Dynamic nature of economic outcomes
 - Adoption now affects current period but also future periods
 - Short-term versus Long-term outcomes
- Variability of economic outcomes
 - Some evidence that it reduces downside risk (insurance losses)
- Uncertainty in private and environmental benefits
 - Still lots of uncertainty on when yield benefits (if any) occur, as well as magnitudes
- Value of environmental benefits
 - E.g., hard to value reduction in N runoff and C sequestration

What does the econ literature say?

- Focus mostly on short-term private benefits and costs (especially for cover crops)
 - Long term cover crop studies still sparse
- Recent short-term cover crop studies indicate private benefits are less than private costs
 - See Plastina et al. 2018a, 2018b; Myers et al 2019
- Studies on long-term no-till systems generally show net profitability
 - Cusser et al 2020 says it may take several years

What does the econ literature say?

- Some conditions that may increase short-term net profitability of cover crops (Myers et al 2019):
 - When cover crops are grazed
 - When herbicide resistant weeds are a problem
 - When soil compaction is an issue
 - When transitioning to no-till
 - When there are soil moisture deficits
 - When fertilizer costs are high
 - When there are government incentive payments
 - Maryland state cost-share programs & EQIP/CSP

Policy Discussions & Issues

USDA Climate Initiatives

- EQIP and CSP programs through NRCS
 - Additional \$10M to support EQIP in 2021 onwards
- Crop insurance premium subsidy of \$5 per acre
 - Pilot program in IL, IN, IA
 - Pandemic Cover Crop Payment
- Proposed \$28B investments in USDA conservation programs
 - In budget reconciliation
 - \$25 per acre from FSA to grow cover crops
 - \$5B to FSA for cover crop program, \$9B for EQIP, \$4B for CSP, \$10B on others

Carbon Markets

\$15 per ton C sequestered (~\$10/acre)

Take Home Messages

- Soil health practices (cover crops and no-till) seen as key practices for sustainable agricultural growth
 - Have important productivity and environmental impacts
- Adoption levels are still low (especially cover crops)
 - Need to consider different economic dimensions that affect long-term profitability
- Strong interest in developing policies to encourage adoption
 - Current administration on the record that they will provide more support
 - Carbon markets to play a role

Thank you!

- Questions?
 - Contact: Rod M. Rejesus, NC State University

Tel No. (919)513-4605

Email: rod_rejesus@ncsu.edu

- Website:
 - Agricultural Policy Website at NC Dept. of Ag. & Resource Economics:
 - https://cals.ncsu.edu/are-extension/policy-andregulation/agricultural-policy-and-farm-bill/

