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Abstract

Along with adverse selection, moral hazard is one of the major hurdles that private
and public insurance plans must contend with. Moral hazard occurs if risks are en-
dogenous to a producer’s behavior and if the insurer is unable to properly monitor
the insured. We review the role of moral hazard in the US crop insurance program.
We conduct an empirical analysis of one important aspect of the US crop insurance
program—Prevented Planting. This provision provides indemnity payments if condi-
tions are not suitable for planting. The program has been the subject of considerable
controversy, especially during 2019, when the rate of claims is expected to be especially
high. Because loss adjustors may encounter difficulties in assessing the weather con-
ditions associated with prevented planting claims, the program is susceptible to moral
hazard. We consider the extent to which prevented planting claims may be endogenous
to prices. We find significant evidence of moral hazard. The likelihood of prevented
planting claims increases as the expected market price decreases or as fertilizer costs
increase for corn and soybeans in the Prairie Pothole Region and for grain sorghum
and cotton in all states.
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1 Introduction

The US federal crop insurance program continues to grow in prominence. Subsidized crop

insurance is now the major instrument used to support US farmers, and accounts for the

largest share of spending (outside of nutritional assistance) under the 2018 Farm Bill. Ac-

cording to the Congressional Budget Office (CBO, 2019), the outlays for the program are

projected to be $41 billion during 2019-2023. The program has expanded to cover a wide

range of perils. In 2015, the program covered 324 million acres with a total liability of $109.6

billion (Risk Management Agency, 2019). Along with adverse selection, moral hazard is a

significant issue in the US crop insurance program. Moral hazard occurs if insured agents

change their behavior in a way that alters their risks and insurers are unable to properly

monitor and price such changes in risk. An important, but often ignored feature of coverage

in the federal program lies in the Prevented Planting (PP) provisions, which pay indemnities

in the event a producer is prevented from planting due to covered hazards. In 2019, the

Farm Service Agency reported that over 19.4 million acres were prevented from planting,

with 73% of that total being in 12 midwestern states that experienced heavy rainfall and

flooding (FSA, 2019). We discuss the role of moral hazard in the US program and examine

the extent to which agents that have coverage for PP change the likelihood of collecting PP

payments when input or output prices change. We demonstrate that PP claims are indeed

endogenous to changes in input and output prices and thereby confirm the presence of moral

hazard.

Prevented planting was brought into the basic provisions of the crop insurance program

by the 1994 Crop Insurance Reform Act. The Risk Management Agency (RMA) defines PP

as a failure to plant an insured crop by the final planting date due to an insured cause of

loss.1 The insured causes of loss include drought, cold wet weather, excess moisture, hail,

and freeze conditions. The PP provision is available for corn, soybeans, grain sorghum,

barley, wheat, cotton, and other primary commodity crops in the US. Under the program,

1The final planting date is a date by which an insurable crop must initially be planted in order to be
insured for the full amount of insurance (OIG, 2013).
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growers of insured crops that cannot be planted due to these insured hazards will receive

50-60% of the total insured value of the crop. The payments are intended to compensate

the pre-planting costs that growers incurred.

Prevented planting indemnity payments depend on the PP coverage factor, the per-acre

production guarantee for timely-planted acreage, the projected price, and the number of

eligible PP acres. In 2017, RMA reduced the PP coverage factor for corn from 60% to 55%.

The coverage factors remained 60% for soybeans, grain sorghum, barley, and wheat, and

50% for cotton. RMA continued to make adjustments to the PP factors for other crops in

2018 and 2019. The producer is also allowed to buy an additional 5% or 10% on the PP

coverage factor.2 The per-acre production guarantee is the insurance a producer has if the

crop is planted before the final planting date under farm-level yield or revenue coverage. To

be eligible for the payments, at least 20 acres or 20 percent of the insured crop must be

prevented from planting.

It is useful to review an example of how PP coverage actually operates. Consider a corn

producer who selects the 60% PP coverage factor and the 75% coverage level for revenue

protection with a projected price of $3/bushel and an actual production history (APH) of

100 bushels/acre.3 If the insured producer has 20 acres that were prevented from planting,

then the PP indemnity payment is 60% · 75% · 3 · 100 · 20 = $2700.

2 Moral Hazard and Prevented Planting

Moral hazard in crop insurance programs may arise through a number of mechanisms and

conditions. In every case, insured agents undertake actions that change the probability of loss

relative to what the losses might be if the agent were uninsured. This may involve changes

in production practices that include input selection and usage, cultivation and managerial

2The PP coverage factor reflects the pre-planting input costs for producers. Similar to the coverage level
election, the PP coverage factor is used to determine the PP indemnity payments associated with yield or
revenue protection.

3Actual production history is used by the RMA to determine the yield guarantee associated with the
insurance coverage. It is calculated as the average per-acre yield of a unit over a 10-year period.
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practices, and the choice of crops. Smith and Goodwin (1996) found that insured wheat

growers tended to use less fertilizer and chemical inputs as compared to similarly situated

non-insured producers. Coble, Knight, Pope and Williams (1996) focused on expected in-

demnities in poor production years to identify moral hazard. Area-wide index insurance has

been proposed as an instrument to manage moral hazard (see Miranda, 1991; and Chambers

and Quiggin, 2002). Yu and Sumner (2018) found that subsidized crop insurance has a sig-

nificant impact on crop choices. This occurs through a shift toward riskier crops. Fadhliani,

Luckstead, and Wailes (2019) examine crop insurance demand by riskaverse Indonesian rice

farmers. Their empirical analysis showed that crop insurance purchases result in a decline

in expected yield through reductions in input use and that higher subsidy rates amplify the

reduction in input use and yield.

Kim and Kim (2018) analyzed the existence of moral hazard in the prevented planting

provisions. They found that producers who has chosen PP indemnities over late planting

tended to have higher coverage levels. They termed this effect as ‘ex-post moral hazard.’

Roll (2019) examine the effect of crop and livestock insurance on input use and yield. Their

empirical analysis focused on the Norwegian salmon farming industry. Their results indicated

that insurance had an enhancing effect on production and efficiency and changed the utilized

input mix, with farmers that are more highly insured using more feed and less capital.

Climate change and its impacts on crop insurance programs has also been considered.

Tack, Coble, and Barnett (2018) found that a one-degree Celsius increase in temperature

would increase 90% coverage level premiums by 39% on average. Tack and Ubilava (2015)

found that extreme weather oscillations alter cotton yield distributions in the Southeastern

United States. These impacts imply significant effects on crop insurance premium rates.

The objective of the Prevented Planting provision is to cover the costs associated with

pre-planting activities in the event that the insured producer is prevented from planting. A

recent Office of the Inspector General (OIG) report argued that RMA had set the coverage

for PP at a level that exceeds the actual costs of pre-planting activities (OIG, 2013). Ratios

of PP indemnity payments to pre-planting costs were estimated to be over 1.5 for corn and
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cotton, and between 1 and 1.5 for wheat and soybeans (Agralytica, 2013). The report by

OIG also found that prevented planting payment rates (per-acre) substantially exceeded the

concomitant Conservation Reserve Program rental payments for similar land.4 Such high

levels of PP coverage create the potential for moral hazard as producers may take advantage

of the PP provisions by growing crops on land that is not suitable for planting rather than

enrolling such land in a conservation program.

Another issue that relates to the potential for abuse in PP coverage pertains to difficulties

in determining when acreage is qualified for PP claims. Approved Insurance Providers (AIPs)

do not always note the lack of documentation and support for PP claims.5 After reviewing

192 policy files, the OIG report concluded that “over $43 million in prevented planting

payments were not fully supported, and acres that are regularly too wet for crop production

may regain or continue to have eligibility for prevented planting coverage.”

Abuse of PP coverage raises concerns regarding the actuarial performance of the Federal

Crop Insurance Program because PP indemnity payments often account for a significant

share of the total indemnity payments. In the last decade, $61.2 billion in total indemnities

were paid to the insured producers and among them $10.1 billion were in the form of PP

indemnity payments. The overall share of total PP indemnity payments exceeded 20% in the

crop year 2010, 2011 and 2015. In other crop years, the share exceeded 10% except for 2012.

In 2012, the share of PP indemnity payments was extremely low due to low PP indemnity

payments and very large total indemnity payments.6 For corn, soybeans, and wheat, shares

of PP indemnity payments are especially high in most years. In 2019, large PP claims are

anticipated as nearly 20 million acres are estimated to have been prevented from planting

due to excessive moisture.

4The Conservation Reserve Program (CRP) is a land retirement program administered by the Farm
Service Agency (FSA). In exchange for a yearly rental payment, farmers enrolled in the program agree
to remove environmentally sensitive land from agricultural production and plant species that will improve
environmental quality. CRP contracts are 10-15 years in length.

5The AIPs are responsible for reviewing and determining the indemnity payments to the insured producer.
6In 2012, PP indemnity payments were about 10% of the total for 2011 and the total indemnity payments

doubled relative to 2011.
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An evaluation of the planted acreage and PP claims undertaken by the OIG (2013)

revealed that only 0.01% of prevented planting land was actually replanted to a second crop.

Producers have incentives not to plant a second crop for several reasons. First, a second

planting decreases the first crop’s PP indemnity payments unless the producer qualifies

for double cropping. If a second crop is planted before the final planting date of the first

crop, then the PP payment is not applicable, otherwise the payment is reduced to 35% of

liability. Second, producers that plant a second crop are often penalized by reductions in

coverage. In particular, late planted crops (planted after a final planting date) have their

coverage reduced by 1% per day after the final planting date set by the RMA. Moreover, the

Agricultural Risk Protection Act of 2000 required RMA to assign the producer a recorded

yield equal to 60% of the producer’s APH for the first crop if a second crop is planted.

Before the Act, approximately 36 percent of all prevented planting acres were planted to a

second crop (OIG, 2013). The objective of these strict policies for second crop planting is

to prevent producers from claiming PP when the acreage is suitable for planting. However,

the near complete absence of second crop planting indicates that many producers did not

intend to plant the crop but rather were seeking prevented planting payments which, as

noted, typically exceeded actual pre-planting costs.

According to the report by the OIG (2013), the Prairie Pothole Region (PPR) has expe-

rienced especially high levels of PP claims. The PPR is an area consisting of parts of Iowa,

Minnesota, Montana, North Dakota, and South Dakota. The PPR accounts for over 50%

of the PP indemnity payments for corn and sorghum and 90% of the payments for barley

and spring wheat. Producers in the PPR have been suspected of practicing fraud and moral

hazard because the PP indemnity payments per acre are much higher than the conservation

program payments. For example, RMA issued a concern for the PP claims for wetlands

in the PPR in 2012, when the weather was extremely dry and should not have prohibited

timely planting.

Concerns regarding fraud and abuse in the PP program were examined by Jin, Rejesus

and Little (2005) and Rejesus et al. (2003). These authors compared PP indemnities to
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claims in surrounding areas . These studies indicated that producers who buy additional PP

coverage are more likely to be flagged as suspicious by the RMA. One avenue for examining

claims for suspicious behavior lies in an assessment of market factors that serve as incentives

to actually plant and harvest a crop. This is but one form of moral hazard that has been

noted as a problem in most existing multiple peril crop insurance programs. Such coverage is

currently offered by the RMA but has experienced relatively low enrollment when compared

to individual coverage.

Moral hazard exists in PP coverage if producers are able to choose between being pre-

vented from planting or timely planting. The opportunity costs of prevented planting are

mainly determined by the expected harvest revenues. The benefit is the PP payment and

savings in variable production costs such as for labor and fertilizer during the growing period.

Labor costs are generally not observable but expected harvest revenue and fertilizer costs

can be at least partially observed. Two important factors in the decision making are the

projected harvest price and fertilizer costs. Given an extreme weather event, the cost of not

claiming PP is that planting incurs additional costs, and the expected yield might be low

and may not be fully compensated by the basic provisions of crop insurance. However, if the

projected harvest price is high, then planting usually leads to more profits as the guaranteed

payments for timely planting can be expected to exceed the sum of planting costs and PP

indemnity payments. Therefore, if claims are endogenous to market prices, as might be sus-

pected in a moral hazard situation, a high projected price should reduce incentives for PP

claims. Likewise, if variable planting costs are particularly high, producers may have lower

incentives to plant the crop if they have PP coverage.

The objective of this study is to determine whether PP losses are endogenous to market

conditions that are represented by the projected harvest price and fertilizer costs. The

existing literature examining PP coverage is often devoted solely to fraudulent claims and

the characteristics of producers having PP claims (Rejesus, Escalantec, and Lovell, 2005; Jin,

Rejesus and Little, 2005; and Rejesus et al., 2003). These studies only focus on the group

of producers that have PP claims, thus making more general inferences about all producers
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difficult. To our knowledge, this study is the first to analyze the behavior of all insured

producers in PP insurance with respect to market conditions.

Our approach is also novel in the methodology of estimating the probability of loss.

PP losses are strongly related to weather conditions, as 95% of the PP claims are caused

by extreme weather conditions such as drought and excessive moisture. The relationship

between weather and the probability of loss in the crop insurance has been widely studied

in the literature on weather derivatives and weather index insurance (Martin, Barnett and

Coble, 2001; Turvey, 2001; Vedenov and Barnett, 2004; and Woodard and Garcia, 2008).

Unfortunately, there is no single set of weather variables (which differ in both calendar time

and in the specific metric used to evaluate weather) from among the extensive set of available

weather data that can be used to predict the yield or probability of loss associated with

weather (Vedenov and Barnett, 2004). This problem has recently been addressed through the

development of high dimensional econometric models. These models use penalized regression

methods to select the specific set of weather variables that best predict weather-based losses.

We utilize the least absolute shrinkage and selection operator (LASSO) method to select

a subset of explanatory weather factors from a collection of over 250 variables. Once PP

claims are conditioned on the optimal weather variables, we examine the extent to which

projected market prices and fertilizer costs affect prevented planting claims. If such market

factors are statistically significant when claims are conditioned on weather conditions, moral

hazard is indicated. Moral hazard would suggest that higher commodity prices and lower

fertilizer costs should lead to fewer and smaller PP claims.

3 Empirical Methods and Analysis

The probability of PP loss is estimated by applying a binomial logistic regression model.

Because of confidentiality restrictions, RMA does not provide farm-level experience data and

thus our empirical analysis is based upon the county-level, aggregated summary of business

data. In particular, we consider annual observations on relevant insurance experience at the
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county and crop level of aggregation. We use the online ‘cause of loss’ data to identify losses

that are associated with prevented planting. Definitions of the explanatory variables and

summary statistics are presented in table 1.

For a single county i, if the probability of one insured acre being prevented from planting

is pi, then the probability of county i having ni insured acres with yi acres being prevented

from planting can be expressed as7

f(ni, yi) =

(
yi
ni

)
pyii (1− pi)ni−yi (1)

We apply a linear logistic regression model to evaluate the probability pi by

log(
pi

1− pi
) = β′xi (2)

where β is a vector of coefficients and Xi is a vector of explanatory variables for county i.

Dropping the constant term

(
yi
ni

)
, yields the following sum of the log-likelihood function

values

L(β;n,y,x) =
K∑
i=1

{
yilog(pi) + (ni − yi)log(1− pi)

}
(3)

Given the complexity of the relationship between weather and the probability of loss and

the extensive variety of weather variables available, we use the LASSO method to select the

most important weather variables that affect the probability of loss. The LASSO method

was introduced by Tibshirani (1996) and has recently become a popular method for model

selection and specification. Variables are selected by minimizing the following objective

function

β̂ = arg min
β
||Y −Xβ||22 + λ|

p∑
j=1

βj| (4)

where ||u||22 =
√∑i=n

i=1 u
2
i and λ is the regularization parameter.

The linear regression model is appropriate for prediction and inference if the error dis-

tribution is Gaussian. However, if the response variable is discrete, then a generalized linear

7Note that, for ease of exposition, we suppress subscripts that correspond to year t and crop j.
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model specified by the LASSO method is more appropriate (Hastie, Tibshirani and Wain-

wright, 2015). In our case, the response variable follows a binomial distribution, and LASSO

selects variables from the negative log-likehood function with l1 regularization:

β̂ = arg min
β

(−L(β;n,y,x)) + λ|
p∑
j=1

βj| (5)

where L(β;n,y,x) is the log-likelihood function defined in equation 3. Replacing pi with

the link function in equation 2, the objective function 5 is convex and can be solved by

standard nonlinear estimation algorithms such as the quasi-Newton methods

β̂ = arg min
β
−

K∑
i=1

{yiβ′xi + (ni − yi)log(1 + eβ
′xi)}+ λ|

p∑
j=1

βj| (6)

Our empirical model relates the probability of a PP loss to a range of weather variables.

Temperature and precipitation are the most popular variables used to predict crop yields

(Schlenker and Roberts, 2006; Vedenov and Barnett, 2004), and therefore are included in

the set of candidate weather variables. To supplement the effects of temperature and pre-

cipitation, monthly aggregate heating degree days (HDD), cooling degree days (CDD) and

the cumulative precipitation are included in the candidate set of potential predictors.8 The

cumulative precipitation in month i is calculated as the sum of the precipitation in previous

months starting at the beginning period of the planting season. Square and cubic transfor-

mations of cumulative precipitation are included to reflect the nonlinear relationship. The

entire set of weather data, which also included various drought indexes, were obtained from

the National Climate Data Center of the National Oceanic and Atmospheric Administration

(NOAA).

If the weather is good for planting, then a minor change in the weather should have little

effect on the probability of loss. Nevertheless, an increase in the precipitation in extremely

wet weather might significantly contribute to losses. To capture such impacts, we identify a

class of variables that represent extreme weather conditions. Extreme weather indicators are

measured by the deviation from the average level of the weather variable. Monthly average

8Daily HDD is calculated as 65◦F minus the average temperature on that day. CDD is calculated as the
average temperature minus 65◦F. Monthly aggregate HDD and CDD are the sum of daily HDDs in a month.
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temperature, precipitation, HDD and CDD are standardized at the county level by using

means and standard deviations x̃ = x−µx
σx

. Data series from 1895 to 2016 are used to identify

normal and abnormal weather conditions. The extreme weather indicators are defined as

wijt =


0 if |x̃ijt| < 1)

1 otherwise.

w2ijt = x̃ijt ∗ I(x̃ijt < −1)

w3ijt = x̃ijt ∗ I(x̃ijt > 1)

(7)

where wijt, w2ijt and w3ijt are the extreme weather indicators generated from weather index

i for county j in month t, and I(·) is the indicator function. Weather indexes that lie outside

one standard deviation are assumed to indicate abnormal weather. Different thresholds were

considered and a one standard deviation value was chosen as optimal. wijt is a dummy

variable indicating whether a weather condition is normal or abnormal, and w2ijt and w3ijt

capture the degree of the unusual weather conditions that are either too low or too high.

For example, let i = 1 for temperature, i = 2 for precipitation, i = 3 for HDD and i = 4 for

CDD. A drought in county j in month t will be reflected in extreme high temperature w31jt,

low precipitation w22jt, and high CDD w34jt.

Weather indexes generated by the National Climatic Data Center (NCDC) are also added

into the model. These eight indexes are useful as they measure moisture and precipitation.

The specific indexes are defined and summarized in table 2. All indexes are continuous

variables but each reflects a different measure of drought and wetness. We utilize a transfor-

mation to categorize these indexes into groups while still preserving a degree of continuity.
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Two dummy variables and two continuous variables are defined as

hijt =


1 if zijt is in category ”Near Normal”.

0 otherwise.

h2ijt =


zijt if zijt is in category ”Mild to moderate Drought” and ”Severe Drought”.

0 otherwise.

h3ijt =


zijt if zijt is in category ”Mild to moderate Wetness” and ”Severe Wetness”.

0 otherwise.

h4ijt =


1 if zijt is in category ”Extreme Wetness/Drought”.

0 otherwise.

(8)

where zijt is the index i of county j in month t from the original data. From the previous

assumption that only extreme weather affects the probability of loss, indexes in the “Near

Normal” category should not affect the probability of loss, and indexes in the “Extreme”

category should have a large effect. The unknown effect of the indexes lies in the category

of “Mild to moderate” and “Severe” where the degree of extreme weather is determined by

the index. Therefore, continuous variables rather than discrete indicators are used to predict

the probability of loss for weather in these categories.

The normal planting period may span two or more months. To ensure that all potentially

relevant weather variables are considered, we include monthly weather variables over a six

month period preceding the start of the normal planting period. Weather conditions after

the final planting date should not affect a producer’s decision on claiming PP. The latest

final planting dates are in June for corn, soybeans, grain sorghum, cotton, spring barley and

spring wheat, and in December for winter barley and winter wheat. Therefore, weather data

from January to June are used for corn, soybeans, grain sorghum, cotton, spring barley and

spring wheat, and data from July to December are used for winter barley and winter wheat.
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In summary, the numbers of weather variables in six months are 4 · 6 = 24 for original

weather data on temperature, precipitation, HDD and CDD, 3 · 6− 1 = 17 for linear, square

and cubic transformations of cumulative precipitation, 3 ·4 ·6 = 72 for three extreme weather

indicators generated from the original weather data, and 4 · 8 · 6 = 192 for four indicators

generated from eight weather indexes.This yields a total of 305 weather indicators that are

included in the LASSO model selection and then used to condition weather effects.

Market conditions are represented using fertilizer costs and the expected harvest price.

Fertilizer costs are measured by the monthly fertilizer cost indexes obtained from the USDA.

However, the cost indexes are not available after 2013, so indexes after 2013 are estimated

using the following OLS regression

Costt = β0 + β1 ∗DAPt + β2 ∗KCLt + β3 ∗ UREA+ β4 ∗Diesel + β5 ∗ CPI (9)

where the regressors are prices of Diammonium Phosphate (DAP), Potassium Chloride

(KCL), urea, diesel and the consumer price index (CPI). These prices are used by RMA

to determine the input costs for margin protection insurance (RMA, 2017).9 Spot prices of

DAP at the US Gulf, KCL at Vancouver, urea at the Black Sea, and diesel at New York

are used and the CPI data are obtained from Federal Reserve Bank of ST.Louis. Weekly

data from 2002 to 2012 are used to estimate the price coefficients and the OLS results are

summarized in table 3. The R-Square is 0.9652 and all the price coefficients are positive as

expected since any increase in these prices increases the input costs. The cost indexes after

2013 are then estimated using the price data from 2013 to 2016.

The expected harvest price is estimated using an approach analogous to how RMA defines

a projected price for revenue coverage. RMA calculates the projected price as an average of

daily settlement prices for the harvest period futures contract over the price discovery period.

The price discovery period usually lasts for a month, so a monthly average settlement price is

used. February prices for the December contract at the Chicago Board of Trade (CBOT) are

used for corn and grain sorghum. February prices for the November contract at the CBOT

9Margin protection provides coverage against an unexpected decrease in the operating margin between
revenues and costs.
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are used for soybeans. February prices for the December contract at the Intercontinental

Exchange are used for cotton. For wheat and barley prices, the chosen month and futures

markets are guided by RMA’s price discovery period and commodities exchange provisions.

The price in each state should also depend on the state basis. Therefore, an adjustment

is made to reflect the perceived price for local producers. USDA provides the prices received

by producers at the state level, so the expected harvest price Pi in state i is adjusted by the

difference between the price received in state i and state j where the relevant commodity

exchange is located

Pi = Pp + Pri − Prj (10)

Here, Pp is the average settlement price, Pri is the index of price received in state i during

the price discovery month, and Prj is the price received in the state where the commodities

exchange is located. For example, if the futures contract is from CBOT in Illinois, then Prj

is the index of price received in Illinois.

A change in the expected harvest price this year is also expected to influence a producer’s

behavior. An increase in the harvest price from last year should lead to a more careful

preparation for the planting activity this year. Therefore, the price ratio of current year to

previous year prices is included in the model as the log change in the expected harvest price

relative to the previous year:

Pratio = log(Pt/Pt−1) (11)

We utilize the following regressors in addition to the aforementioned collection of weather

variables—the log of the expected harvest price, the log of the fertilizer price, the log of the

price ratio, the average crop insurance coverage level and a measure of the crop insurance

unit size (acres/unit). These variables are included in all models and are not subject to the

LASSO selection method. In addition to the weather variables, we include a time trend, a

state indicator, and a farm resource region indicator in the set of potential regressors to be

chosen by LASSO. Before the minimization, all independent variables X are standardized

to have 0 mean ( 1
N

∑N
i=1 xij = 0) and unit variance ( 1

N

∑N
i=1 x

2
ij = 1). The regularization

parameter λ in equation 5 is set to be λ = ρi for ith step and ρ is arbitrarily set to 0.7. The
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initial base value of ρ does not affect the estimates as long as λ converges to a small number

after several iterations. Twenty-five steps are used in the optimization and Nesterov’s (2013)

method is applied to solve the minimization problem for its optimal convergance rate for

the first-order optimization. The data are divided into training and validation data sets.

Seventy-five percent of the data are randomly chosen for training and the remainder are

used for validation. For each λ and its corresponding estimated coefficients, the Bayesian

Information Criterion (BIC) of the validation data is computed. The optimal λ is then

selected from the smallest BIC for the validation data.

It is difficult to estimate standard errors in the LASSO model, so the selected variables

and their standard errors are computed by a standard binomial logistic regression with un-

penalized maximum likelihood estimators (MLE). In the estimation, post-LASSO estimators

often provide better or at least equal performance relative to the LASSO estimators in terms

of bias (Belloni and Chernozhukov, 2013).10 It is possible to improve the estimation using

the post-LASSO procedures because the minimization method applies a second-order Taylor

series expansion of the likelihood function, which is analogous to least squares regression.

If moral hazard does not exist, then producers’ planting decisions should be only be

influenced by weather. In such a case, the variables in table 4 should have little impact on

the probability of PP loss. Our results indicate that all of the parameter estimates in table

4 are statistically significant at the 0.01 or smaller level. This suggests the presence of moral

hazard in prevented planting claims. Producers’ planting decisions appear to be influenced

by market conditions. We expect that the likelihood of PP claims should be higher when the

expected planting revenues are low or input costs are high.It is also the case that changes in

the expected harvest price are also reflected in the price ratio. Therefore, the total effects

of the harvest price are given by the sum of the harvest price effect and the effect of the

price ratio. Conversely, the effect of the input price solely depends on the coefficient of the

logarithmic input price. The results in table 4 suggest that, in all cases except for wheat

and barley, the likelihood of PP claims increases if the expected harvest price decreases

10Post-LASSO estimators are taken from the standard regression estimates using the selected variables
from the LASSO.
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or the input price increases. Moral hazard is indicated if both (or either of) the sum of

the coefficients of harvest price and the price ratio effects are negative and the coefficient

of input price is positive. Using this criteria, moral hazard is indicated for corn, soybeans,

grain sorghum, spring barley and cotton. In accordance with widespread observations, moral

hazard is more severe in the Prairie Pothole Region (PPR) as the magnitude of the price

coefficients is much larger for this region. For example, the coefficient of harvest price

increases in magnitude from −2.76 for corn producers in all states to −5.18 for producers in

the PPR. Likewise, the coefficient for input prices also increases from 0.30 to 4.77. Similar

results are found for soybeans, grain sorghum and spring barley. This finding suggests that

producers in the Prairie Pothole Region are more likely to have PP claims than are producers

in other regions.

The average coverage level in the model may reflect producers’ risk preferences as well

as perceptions of yield and price risk for the relevant crops and areas. It should be noted

that a higher coverage level increase both the PP indemnity payments and the insurance

guarantee associated with timely planting.11 The effect of coverage level on producers’

decision-making influences the probability of loss for planting. If the PP coverage factor is

60% and the probability of loss for planting is 60%, then the coverage level has no impact

on producer’s choice. In general, the probability of loss for planting is often less than the

coverage level. Therefore, an increase in the coverage level often increases the potential PP

indemnity payments and thus should increase the probability of PP indemnity payments.

Results confirm that coverage level has this positive effect on the probability of PP claims

for all crops except soybeans.

The variable acres/unit is used to measure the average size of the insurance unit in the

county and may also indicate the scale of farms in the county. Larger farms may have less pre-

vented planting activity because they often have better equipment and superior managerial

skills to address extreme weather. Larger units may also reflect corporate farm structures.

Rejesus, Escalante, and Lovell (2005) found that corporate farms were less likely to submit

11PP indemnity payments can be calculated as the PP coverage level multiplied by the guarantee associated
with timely planting.
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a PP claim. Finally, increases in the subsidy rate for enterprise units in 2011 caused a sig-

nificant shift in participation toward more highly aggregated enterprise units. Such units

typically have lower overall risk due to the effect of aggregating across all units operated by

a farm in a county. Enterprise units also realize lower premium rates to reflect this aggrega-

tion effect. Our results indicate that a larger average unit decreases the probability of loss

for corn (in all states), grain sorghum (in the PPR), barley, winter wheat and cotton and

increases the probability of loss for other crops. Thus, there is not a consistent pattern for

the effect of unit size on the probability of loss.

The existence of moral hazard in PP coverage affects the actuarial performance of the

entire federal crop insurance program and results in additional costs for taxpayers. We

examine the extent to which market conditions lead to higher indemnity payments. In

particular, we consider how a 1% increase in input prices or a 1% decrease in output prices

change the probability of loss and the corresponding PP indemnity payments.12 For each

change in the price, the probability after the change and the change in the total indemnities

are reported in table 5. The most significant change in the indemnities are for corn and

soybeans in the PPR. A 1% decrease in the expected harvest price will increase the annual

indemnity payments by $12.31 million for corn and $5.52 million for soybeans in the PPR.

A 1% increase in input costs will increase the annual indemnity payments by $52.21 million

for corn and $10.55 million for soybeans. For other crops, such as grain sorghum, cotton and

spring barley, the changes are smaller but still indicate higher indemnity payments for the

PP insurance.

4 Concluding Remarks

Very large PP indemnity payments in the crop insurance program raise important questions

about the role of moral hazard. PP claims should be driven solely by extreme weather

12The probability of loss is estimated at the mean and the total indemnity payments are estimated as the
proportion indicated by the probability of loss. Total indemnity payments can be calculated as Total Acres∗
Probability of Loss/Acre ∗ Indemnities/Acre. Here, the indemnities per acre variable is evaluated at the
mean value and is not affected by the harvest price.
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events. We condition the effects of market conditions (reflected in input and output prices)

on a variety of weather indicators. The most important weather factors for each crop and

region are chosen using LASSO regression methods. We find that the opportunity costs of

submitting PP claims are strongly related to market conditions and are not solely driven by

weather conditions, thereby indicating moral hazard. The problems of moral hazard appear

to be especially acute in the Prairie Pothole Region of the midwest. Price impacts on PP

claims and overall PP claims are typically substantially higher in this region.

In 2017, RMA reduced the PP coverage factor for corn from 60% to 55%. Our results

suggest that the same reduction should be considered for grain sorghum, cotton and spring

barley as our results provide evidence of moral hazard among producers of these crops. PP

claims for corn and soybeans in the Prairie Pothole Region appear to be influenced by a

large degree of moral hazard which can result in excessive PP indemnity payments under

certain market conditions. Therefore, claims for PP should be reviewed more carefully in the

PPR. The PP indemnity payments in 2019 are expected to be very large due to excessive

moisture in important growing regions, making these issues of particular relevance in the

current policy environment. The extent to which such large indemnity payments in 2019

will reflect moral hazard is unclear since many growing regions experienced weather extremes

which resulted in a significant amount of acreage that justifiably could not be planted. Under

such circumstances, a substantial level of valid claims for PP is anticipated. Data for 2019

PP payments are not yet available but are expected to be substantial. The PP provisions

present significant challenges to loss adjustors and AIPs, who may be limited in their abilities

to accurately assess past weather conditions at any given location.
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Table 1: Variable Definitions and Summary Statistics

Variable Definition

Year Crop year

State Fips Fips Code for each state

Region Farm resources region

Total Acres Total insured acres in the county

Acres loss Total acres with PP losses in the county

Harvest Price Expected havest price (Log term)

Input Price Estimated fertilizer costs (Log term)

Price Ratio Log ratio change in the expected havest price from last year

Coverage Level Average coverage level (sum of covered acres/total insured acres)

Acres/Unit Total insured acres/Total units (Log term)

Corn Corn (PPR) Soybeans

Variable Mean Std. Dev Mean Std. Dev Mean Std. Dev

Year 2009.54 4.05 2009.53 4.03 2009.58 4.05

State Fips 30 14 30 10 29 13

Region 3.61 2.42 1.99 1.24 3.48 2.47

Total Acres 37652 48826 83126 65769 38141 45978

Acres loss 654 3276 1826 6931 524 2497

Harvest Price 1.38 0.32 1.32 0.33 2.19 0.32

Input Price 5.46 0.34 5.46 0.33 5.47 0.33

Price Ratio 0.03 0.22 0.03 0.22 0.00 0.27

Coverage Level 0.68 0.08 0.71 0.07 0.69 0.07

Acres/Unit 4.43 0.62 4.63 0.46 4.36 0.55

Soybeans (PPR) Grain Grain

Sorghum Sorghum (PPR)

Variable Mean Std. Dev Mean Std. Dev Mean Std. Dev

Year 2009.55 4.05 2009.69 4.09 2009.47 4.16

State Fips 29 10 31 14 45 4

Region 1.70 0.90 4.36 2.34 2.60 0.80

Total Acres 88291 64099 6960 15552 2934 6739

Acres loss 1556 5073 119 839 138 567

Harvest Price 2.16 0.31 1.40 0.31 1.28 0.33

Input Price 5.46 0.33 5.47 0.33 5.45 0.34

Price Ratio -0.01 0.27 0.03 0.22 0.03 0.23

Continued on Next Page
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Table 1 – Continued From Previous Page

Coverage Level 0.73 0.04 0.64 0.07 0.63 0.06

Acres/Unit 4.55 0.42 3.99 0.79 4.06 0.90

Spring Spring Fall Barley

Barley Barley (PPR)

Variable Mean Std. Dev Mean Std. Dev Mean Std. Dev

Year 2009.53 4.14 2009.10 4.12 2009.38 4.22

State Fips 34 14 33056 6039 31 13

Region 4.15 2.23 3.27 1.97 4.47 2.47

Total Acres 5501 13326 11180 19479 9805 17099

Acres loss 222 1653 531 2648 410 2249

Harvest Price 5.97 0.35 1.33 0.38 5.95 0.36

Input Price 5.48 0.29 5.47 0.30 5.46 0.30

Price Ratio 0.03 0.31 0.03 0.27 0.03 0.36

Coverage Level 0.65 0.07 0.67 0.05 0.67 0.07

Acres/Unit 4.02 0.91 4.23 0.75 4.34 0.79

Fall Spring Spring

Barley (PPR) Wheat Wheat (PPR)

Variable Mean Std. Dev Mean Std. Dev Mean Std. Dev

Year 2009 4 2010 4 2010 4

State Fips 33184 5916 34 11 35296 7745

Region 3.29 1.96 3.65 2.35 2.86 1.79

Total Acres 11282 19539 68993 92683 72494 95343

Acres loss 536 2660 2465 13256 2951 14590

Harvest Price 1.33 0.38 1.78 0.37 1.75 0.35

Input Price 5.47 0.30 5.47 0.34 5.47 0.34

Price Ratio 0.03 0.28 -0.01 0.30 -0.02 0.30

Coverage Level 0.67 0.05 0.69 0.05 0.69 0.04

Acres/Unit 4.24 0.74 4.61 0.67 4.52 0.66

Winter Cotton

Wheat

Variable Mean Std. Dev Mean Std. Dev

Year 2009.45 3.92 2009.58 4.03

State Fips 30 14 30 18

Region 3.88 2.45 6.20 1.81

Total Acres 17895 39081 23301 43339

Continued on Next Page
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Table 1 – Continued From Previous Page

Acres loss 383 1879 337 2231

Harvest Price 1.76 0.36 -0.30 0.25

Input Price 0.03 0.33 5.47 0.33

Price Ratio 0.01 0.08 0.03 0.30

Coverage Level 0.66 0.07 0.64 0.06

Acres/Unit 4.14 0.69 4.62 0.68
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Table 2: Weather Indexes Summary*

Palmer Hydrological Drought Index (PHDI)

Palmer Drought Severity Index (PDSI)

Modified Palmer Drought Severity Index (PMDI)

Palmer ”Z” Index (ZNDX)

Approximate Range* Range Category

Cumulative Frequency** (%) PHDI, PDSI, PMDI Z

> 96 > 4 > 3.5 Extreme Wetness

90-95 (3,4] (2.5,3.5] Severe Wetness

73-89 (1.5,3] (1,2.5] Mild to moderate Wetness

28-72 [-1.5,1.5] [-1.25,1] Near Normal

11-27 [-3,-1.5) [-1.99,-1.25) Mild to moderate Drought

5-10 [-4,-3) [-2,2.75) Severe Drought

< 4 < −4 < −2.75 Extreme Drought

Standardized Precipitation Index (SPxx)

The probablility of observing a given amount of precipitation in xx month

Available SPxx are SP01, SP02, SP06 ,SP09

Range Category Range Category

< −3 Extreme drought > 3 Extreme Wetness

[−3,−2) Moderate Drought (2,3] Severe Wetness

[−2,−1) Mild Drought (-1,-2] Mild Wetness

[−1, 0] Normal (0,1] Normal

*The range and the corresponding category are introduced in the NCDC’s weather division documentation.

**Frequency of the indexes is calculated through all months and weather divions
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Table 3: OLS Regression of Fertilizer Indexes

Variable Estimators Standard Errors P-values

Intercept -93.51508 36.60831 0.0118

DAP 0.09218 0.01623 < .0001

PCL 0.21836 0.01527 < .0001

UREA 0.07881 0.03244 0.0165

Diesel 16.73314 6.19579 0.0078

CPI 0.74519 0.24132 0.0025

R-Square 0.9652
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Table 4: Main Results from Logistic Regression*

Intercept Coverage Harvest Input Price Acres

Price Price Ratio /Unit

Corn (ALL) 495.8704 1.8506 -2.7613 0.3003 1.661 -0.2566

(1.9981) (0.0089) (0.0192) (0.0158) (0.0124) (0.0009)

Corn (PPR) -29.5394 4.8368 -5.1815 4.7725 1.0942 0.2183

(0.0509) (0.0182) (0.0114) (0.0113) (0.0053) (0.0017)

Soybeans 496.23 -4.5747 5.5584 -2.2376 -1.3128 0.0897

(ALL) (2.4785) (0.0115) (0.0327) (0.0149) (0.0087) (0.0010)

Soybeans -14.0405 -4.5857 -1.8027 1.4225 -0.1592 0.6752

(PPR) (0.0546) (0.0273) (0.0181) (0.0140) (0.0075) (0.0019)

Grain -12.7323 0.6589 -0.7011 1.0287 0.4073 0.5239

Sorghum (ALL) (0.0652) (0.0274) (0.0175) (0.0149) (0.009) (0.0021)

Grain -23.2451 5.0302 -4.059 4.0758 -0.0989 -0.1546

Sorghum (PPR) (0.2785) (0.1402) (0.0533) (0.0563) (0.0269) (0.0092)

Spring -16.8773 11.2182 -0.7969 0.8394 0.2174 -0.3148

Barley (ALL) (0.0911) (0.0403) (0.0153) (0.0184) (0.0116) (0.0032)

Spring -25.9612 15.9222 -2.1117 1.6508 0.3191 -0.1608

Barley (PPR) (0.0944) (0.0562) (0.0169) (0.0177) (0.0107) (0.0041)

Fall -7.4839 12.4092 -0.4347 -0.6102 1.3147 -0.3959

Barley (ALL) (0.0686) (0.041) (0.0127) (0.0143) (0.0082) (0.0033)

Fall -1.5878 15.7104 1.6355 -3.0465 3.4193 -0.2766

Barley (PPR) (0.1094) (0.055) (0.0202) (0.0214) (0.0115) (0.0041)

Spring -5.0613 10.2785 0.9797 -2.6339 -0.4636 0.2497

Wheat (ALL) (0.0368) (0.0193) (0.0086) (0.0082) (0.0037) (0.0017)

Spring -10.146 12.98 0.0492 -1.4933 -0.0382 0.3337

Wheat (PPR) (0.0425) (0.0236) (0.0095) (0.0094) (0.0044) (0.0019)

Winter -15.8857 3.6159 1.216 0.4394 0.6591 -0.1488

Wheat (ALL) (0.0389) (0.0116) (0.0131) (0.0094) (0.0075) (0.0012)

Cotton (ALL) -21.9057 7.8701 -0.3138 0.2852 -0.7178 -0.006

(0.0787) (0.0164) (0.0081) (0.0048) (0.0056) (0.0015)

*All estimated coefficients are significant at 0.01 level
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Table 5: Probability and Indemnities Response for Changes in Price Factors

Corn Corn Soybeans Soybeans Sorghum

ALL PPR PPR ALL

Probability at Mean Value 0.4240% 0.3899% 0.4136% 0.3021% 0.9807%

Annual Indemnities 309.53* 175.81 137.07 73.35 7.04

1% Decrease in Harvest Price

Estimated Probability 0.4055% 0.4172% 0.3664% 0.3140% 0.9901%

Change in Annual Indemnities -13.51 12.31 -15.64 2.89 0.07

1% Increase in Input Costs

Estimated Probability 0.4297% 0.5054% 0.3662% 0.3264% 1.0368%

Change in Annual Indemnities 4.13 52.12 -15.71 5.90 0.40

Sorghum Spring Spring Fall Fall

PPR Barley All Barley PPR Barley All Barley PPR

Probability at Mean Value 3.8799% 0.4788% 0.9793% 0.7364% 0.8829%

Annual Indemnities 0.41 11.03 9.55 10.78 9.55

1% Decrease in Harvest Price

Estimated Probability 4.0786% 0.4839% 1.0068% 0.7404% 0.8631%

Change in Annual Indemnities 0.02 0.12 0.27 0.06 -0.21

1% Increase in Input Costs

Estimated Probability 4.7978% 0.5012% 1.0708% 0.7125% 0.7485%

Change in Annual Indemnities 0.10 0.52 0.89 -0.35 -1.45

Spring Spring Winter Cotton

Wheat All Wheat PPR Wheat

Probability at Mean Value 0.6191% 0.5326% 1.3837% 0.3948%

Annual Indemnities 96.26 93.66 42.13 21.95

1% Decrease in Harvest Price

Estimated Probability 0.6086% 0.5321% 1.3544% 0.3945%

Change in Annual Indemnities -1.64 -0.08 -0.89 -0.02

1% Increase in Input Costs

Estimated Probability 0.5366% 0.4910% 1.4170% 0.4010%

Change in Annual Indemnities -12.84 -7.30 1.02 0.34

*The unit of annual indemnities is $1,000,000.
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