AGRICULTURAL HOUSEHOLD MODELS

I. MODEL BASICS

- Ag HH's in LDC's make joint decisions over:
 - ➤ Consumption
 - > Production
 - ➤ Work (labor) allocation ⇔ leisure

AG. HH MODELS PROVIDE A FRAMEWORK FOR ANALYZING HH BEHAVIOR THAT INTEGRATES THESE THREE DECISIONS.

Key distinctions/points addressed by Ag. HH models

- ➤ Net selling vs. net buying households (for labor, production)
- Complete vs. incomplete markets
- ➤ Backward bending supply curves

Key Assumptions/Stylized Facts

- 1. Leisure is better termed "home time." It includes:
- Family maintenance (cooking, cleaning)
- Reproduction (kid tending)
- Social obligations (religious, cultural stuff)
- ➤ Sleep
- > Leisure
- 2. Unified decision-making (unanimity, consensus or dictatorship)
- 3. HH generally includes only those living in one "abode"

II. LEISURE-INCOME TRADEOFF

- An increase in returns to a unit of labor (implicit OR explicit wage) causes the income constraint \overline{AB} to swivel out (to \overline{AC}).
- The optimum point moves from (\mathbf{l}_1, y_1) to (\mathbf{l}_2, y_2)
- As drawn, $l_2 > l_1 \Rightarrow$ income effect of increased wages outweighs the substitution effect (change in the opportunity cost of leisure)

⇒ BACKWARD BENDING LABOR SUPPLY

III. CHAYANOV MODEL

A. Features

- Utility maximization
- Product market but no labor market
- ⇒ Implicit wage = marg. rate of subst. between Y and leisure
- Household trades off consumption against the disutility of labor (Ellis' "drudgery averse" peasant
- Demographic factors dominate outcome

B. The Model

Max $U(Y, \mathbf{l})$ subject to:

$$Y = P \cdot f(L); T^* = L + 1; Y \ge Y_{MIN}; L \le L_{MAX}$$

Solution: $\frac{\partial U/\partial |}{\partial U/\partial Y} = Pf_L$ \Leftrightarrow subjective equilibrium

 $I_1 \rightarrow I_2$ follows from increase in HH size (w/o an increase in the # of workers per HH). That is: Y/cap. $\downarrow \Rightarrow MU_Y \uparrow \Rightarrow subj.$ wage \downarrow .

Need to feed more HH members \Rightarrow HH more willing trade off more for an extra unit of Y ($I_1 \rightarrow I_2$)

CHAYANOV MODEL WITH LABOR MKT: NET BUYER OF LABOR

- Wage line (ww') = opportunity cost of family labor
 - The steeper the slope of ww', the higher the wage rate
 - ➤ Here wages are relatively low (flat slope)
- Production occurs at point A (where MPL = W/P), but the household works only at L^S and consumes leisure at point B (where MRS = W/P)
 - $ightharpoonup L L^s = amount of hired labor$
 - ightharpoonup T* L^S = leisure
- There is an unambiguous improvement in welfare compared to the old situation of no labor market.
 - ightharpoonup No labor mkt \Rightarrow L^S = L₀ and welfare is given by I₀ (< I₁).

CHAYANOV MODEL WITH LABOR MKT: NET SELLER OF LABOR

- Here ww' is relatively steep ⇒ high wage
- Farm production occurs at L (all HH labor)
- Off-farm labor = $L^S L$.
- Leisure is less than previous situation because the wage is high
 - ⇒ ***** High Opportunity Cost of not working *****

BOTTOM LINE:

Introducing a labor market renders consumption (of leisure) independent of production decision.

THE SEPARABLE AG. HOUSEHOLD MODEL (COMPLETE MARKETS)

NOTATION

 C_F = Food consumption

 C_{NF} = Non-food consumption

 ℓ = Leisure

 $Q_F = Output$

L = Labor used in production (both household labor and hired labor)

X = Other input used

T* = Total time available to the household

W = Wage rate

H = Household labor

 P_i = Price of commodity i (i = F, NF, X)

I. The Constrained Utility Maximization Problem

Max $U(C_F, C_{NF}, \ell)$, subject to three constraints:

1. Production: Q = f(L, X)

2. Time: $T^* = H + \ell$

3. Full Income: $P_F(Q_F - C_F) + W(H - L) = P_X X + P_{NF} C_{NF}$

These three constraints can be combined into one "full income" constraint:

of time

$$(P_{F} f(L, X) - P_{X} X - WL) + W \times T^{*} = \pi^{*} + W \times T^{*} = P_{F} C_{F} + P_{NF} C_{NF} + W\ell$$
Farm profit (\pi^{*})
Full value

II. First Order Conditions

1.
$$\frac{\partial U}{\partial C_F}$$
 - $\lambda P_F = 0$

$$2. \frac{\partial U}{\partial C_{NF}} - \lambda P_{NF} = 0$$
 Marg. rate of subst. = price ratio for any

3.
$$\frac{\partial U}{\partial 1}$$
 - $\lambda W = 0$

two goods

4.
$$\lambda \left[P_F \frac{\partial Q_F}{\partial L} - W \right] = 0$$
 \Rightarrow Value marginal product of labor = wage

5.
$$\lambda \left[P_F \frac{\partial Q_F}{\partial X} - P_X \right] = 0 \implies \text{Value marginal product of input } x = P_X$$

6.
$$\pi^* + WT^* = P_F C_F + P_{NF} C_{NF} + W\ell$$
: Full income constraint

Key Points

- 1. Production decisions over X and L affect consumption decisions via farm profits (π^*) in the full income constraint.
- 2. Consumption decisions do not affect production decisions. In other words, production is independent of (separable from) household preferences and income.
- 3. In the Chayanov model, effect of income on production was ambiguous – HH might choose more leisure/less output when returns 1. The key difference here is that the existence of a labor market means the household can now maximize profit using hired labor while still taking increased leisure.

III. Comparative Statics

A. Food Demand

At the optimum, $C_F = C_F(P_F, P_{NF}, W, P_X, Y^*)$ where $Y^* = P_F Q_F^* - P_X X^* - WL^* + WT^*$

* DEMAND DEPENDS ON PRICES AND INCOME AS USUAL, BUT PRICES NOW HAVE AN ADDED EFFECT ON INCOME VIA PROFITS

To see this, totally differentiate C_F w.r.t. P_F:

$$\frac{\partial C_{F}}{\partial P_{F}} = \frac{\partial C_{F}}{\partial P_{F}} \Big|_{\pi * constant} + \frac{\partial C_{F}}{\partial Y *} \cdot \frac{\partial Y *}{\partial P_{F}}$$

$$\frac{Standard}{Slutsky} = Equation$$

$$= \frac{\partial C_{F}}{\partial P_{F}} \Big|_{U \text{ constant}} + (Q_{F} - C_{F}) \frac{\partial C_{F}}{\partial Y *}$$

$$< 0 \qquad MS (+ \text{ or } -) > 0$$

Elasticity form: $\varepsilon_P = \varepsilon^{HICKS} + [P_F(Q_F - C_F)/Y^*]\eta_F$

Points

- (1) If HH is net buyer of food, then dC/dP is always negative.
- (2) **Profit effect** at least **reduces** the usual **negative relationship**.
- (3) If marketed surplus is large enough, then $\frac{\partial C_F}{\partial P_F}$ may actually turn positive (**especially if income elasticity is large**)

B. Leisure Demand

At the optimum, $\boldsymbol{l} = \boldsymbol{l}(P_F, P_{NF}, W, P_X, Y^*)$

Totally differentiating C_F w.r.t. P_F:

$$\frac{\partial \mathbf{I}}{\partial \mathbf{W}} = \frac{\partial \mathbf{I}}{\partial \mathbf{W}} \Big|_{\Delta \pi^* = 0} + \frac{\partial \mathbf{I}}{\partial \mathbf{Y}^*} \cdot \frac{\partial \mathbf{Y}^*}{\partial \mathbf{W}} = \frac{\partial \mathbf{I}}{\partial \mathbf{W}} \Big|_{\Delta \pi^* = 0} + \frac{\partial \mathbf{I}}{\partial \mathbf{Y}^*} \cdot (\mathbf{T}^* - \mathbf{L})$$

$$\underbrace{\begin{array}{c|c} \text{Standard} \\ \text{Slutsky} \\ \text{Equation} \end{array}}_{\text{Equation}} - \frac{\partial \mathbf{I}}{\partial \mathbf{Y}^*} \cdot \mathbf{I} + \frac{\partial \mathbf{I}}{\partial \mathbf{Y}^*} \cdot (\mathbf{T}^* - \mathbf{L})$$

$$= \frac{\partial \mathbf{I}}{\partial \mathbf{W}} \Big|_{\Delta U = 0} + (\mathbf{H} - \mathbf{L}) \cdot \frac{\partial \mathbf{I}}{\partial \mathbf{Y}^*} \quad [\text{Note: } \mathbf{T}^* = \mathbf{H} + \mathbf{\ell} \Rightarrow \mathbf{T}^* - \mathbf{\ell} = \mathbf{H}]$$

$$\underbrace{\begin{array}{c|c} \mathbf{I} \\ \mathbf{N} \\ \mathbf{N}$$

Points

1. $H - L < 0 \Rightarrow$ Net purchaser of labor

$$\Rightarrow \frac{\partial I}{\partial W}$$
 is unambiguously negative.

2. However, if $H - L > 0 \Rightarrow$ Net seller of labor (e.g., landless)

$$\Rightarrow \frac{\partial |}{\partial W}$$
 may be positive (depends on the size of income elast., m.s)

C. Marketed Surplus

Start with the basic identity:

$$\mathbf{M} = \mathbf{Q}_{\mathrm{F}} - \mathbf{C}_{\mathrm{F}}$$

Totally differentiating:

$$\frac{dM}{dP_F} \quad = \quad \frac{dQ_F}{dP_F} \quad - \quad \frac{dC_F}{dP_F}$$

$$= \frac{dQ_{F}}{dP_{F}} - \frac{\partial C_{F}}{\partial P_{F}} \Big|_{\Delta U = 0} - (Q_{F} - C_{F}) \frac{\partial C_{F}}{\partial Y^{*}}$$

$$\rightarrow 0 + or - > 0$$

- If M (= $Q_F C_F$) is large enough, then the household's consumption response may outweigh its output response
- ⇒ marketed surplus may actually <u>fall</u> when price increases

IV. Advantages of Ag. Household Models

- 1. **Key empirical distinction** of agricultural household models is that they **account for the profit effect**
- Affects demands for all sorts of commodities (including non-agricultural ones) and labor supply via **cross price effects**.
- Potentially important for **policy** design and assessing the impact of policies (e.g., price policies)
- Where profit effects are greatest
- When profits are a large share of total income
- For commodities having relatively large income elasticities.
- 2. Explicit linkage of production and consumption points out relationships ignored in standard models
- Ag. household model ⇒ W, price of inputs should be in the demand functions.
- 3. Ag household models are best used when:
- Profit effects expected to be large
- Profits are large share of income
- Income elasticities are relatively high
- No market failures (or limited ones)

V. Extensions

A. Multiple crops

- Accommodates policy questions regarding export vs. food crop interventions (e.g., taxes, price policies).
- Accommodates differences in input usage across crops (e.g., fertilizer)
- Note that price policies for one crop will affect production of other crops

B. Nutrition

- Modify model by adding set of relationships between consumption goods (foods) and nutrients or calories
 - ⇒ Response of nutrients or calorie intake to price changes

C. Health

- Related to nutrition
- Health production function: $H = H(C_F, C_{NF}, \mathbf{l}, \text{ other stuff})$
- May affect production function (e.g., efficiency wages)

D. Intertemporal models

- Storage (e.g, my stuff, Saha's extension)
- Borrowing

EMPIRICAL RESULTS OF INTEREST TO POLICY MAKERS

- 1. Lower market supply response when profit effects are considered
- 2. Price policy (or technological change) boosts Labor demand <u>AND</u> tends to lessen labor supply (Singh, Squire, and Strauss, Table 1.5), which is good for landless and smallholders (since it puts upward pressure on wages)
- 3. Demand for non-agricultural goods more strongly affected by an increase in the price of food (because the income elasticity of nonfood is usually greater than that of food).

THE NON-SEPARABLE AG HOUSEHOLD MODEL (MISSING MARKETS)

I. NON-SEPARABLE MODELS

When one or more market is "incomplete" then recursiveness breaks down ⇒ consumption variables determine production

Sources of non-separability

- Transactions costs
 - Distance to market
 - ➤ High transport costs
 - Excessive mkting margins (e.g., traders w/ monopoly power)
- Thin markets
 - > Covariate production,
 - ➤ Isolated or remote markets
 - Not alot of buyers and sellers
- Risk & risk aversion

Market Failure (deJanvry, Fafchamps & Sadoulet)

Definition: A market fails when the cost of a transaction through market exchange creates disutility greater than the utility gain that it produces, such that no market transaction occurs

- Non-existence of a market is an extreme case of mkt failure
- More commonly, a market exists but some households won't participate (because gains < cost)
- Market failure is household specific (not commodity specific)

The Price Band Picture

- P_{BUY} and P_{SELL} are the boundaries of the household's **price band** (depicted by the red lines).
- If the households marginal cost (supply) curve crosses its demand curve within the price band, then the household does not participate in the market.
- If the households marginal cost (supply) curve crosses its demand curve above the price band, then the household is a net purchaser.
- If the households marginal cost (supply) curve crosses its demand curve above the price band, then the household is a net purchaser.

Price Bands

Width depends on:

- 1. Transport costs
- 2. Markups by merchants
- 3. Opp. costs of time involved in transactions (e.g., search)
- 4. Risks associated with uncertain prices/availability of goods (i.e., certainty equivalent prices less than mkt price).

⇒ Price band widens with:

- 1. Poorer infrastructure
- 2. Less competitive marketing system
- 3. Poorer information flow
- 4. Greater price risk.

For a given width price band

- Net Buyer Household is more likely to stay above the price band as supply fluctuates the more elastic its demand.
- **Net Seller Household** is more likely to stay **below** the price band as demand fluctuates the more elastic its supply.

In remote markets with covariate production risk, price bands move w/ supply shift such that HHs tend to stay self-sufficient

- Positive supply shift ⇒ band moves down ⇒ HH doesn't become net seller
- Negative supply shift ⇒ band moves up ⇒ HH doesn't become net seller

THE WORLD ACCORDING TO OMAMO

Maximization problem:

$$\begin{aligned} &\text{Max U(C}_F, \, C_{NF}, \, \ell \,\,) \\ &\text{s.t.} \,\, (P_F \pm \tau) M_F + W(H-L) = (P_{NF} \pm \tau) C_{NF} + P_X X \end{aligned}$$

Solution for net seller:

$$U_F = \lambda [P_F - \tau] \implies \text{if } \tau \uparrow \text{ then } U_F \downarrow \implies C_F \uparrow$$

$$[P_F - \tau] \frac{\partial Q_F}{\partial L} = w \quad \Rightarrow \text{ if } \tau \uparrow \text{ then } \frac{\partial Q_F}{\partial L} \uparrow \Rightarrow Q_F \downarrow$$

Solution for net buyer:

$$U_F = \lambda [P_F + \tau] \implies \text{if } \tau \uparrow \text{ then } U_F \uparrow \implies C_F \downarrow$$

$$[P_F + \tau] \frac{\partial Q_F}{\partial L} = w \quad \Rightarrow \text{ if } \tau \uparrow \text{ then } \frac{\partial Q_F}{\partial L} \downarrow \Rightarrow Q_F \uparrow$$

BOTTOM LINES

- 1. In both instances, increased transactions costs drive household toward autarky
- 2. Given no changes in production technology or land available, increasing food production means de-emphasizing cash crop production

DEJANVRY, FAFCHAMPS, AND SADOULET: "MISSING MARKETS AND PEASANT BEHAVIOR: SOME PARADOXES EXPLAINED"

I. MOTIVATION

Peasant gripe: Scarcities of either household labor and food are the norm → "Labor is short when weather is good"

→ "Food is scarce when weather is bad"

Gov't gripe: Peasants are unresponsive to price incentives and to technological opportunities in cash crop production

[Note: This issue is framed so that it is more relevant to Africa than Asia]

II. Simulation Results (assumes 2 goods, food and other)

A. Change in the price of cash crops

- Small increase in cash crop output if no markets for food because household has to maintain its own food supply (*Evidence:* low cash crop supply elasticities in Africa)
- Increases in spending on manufactured goods and fertilizer in the "no markets" case because there's nothing else to spend money on.
- shadow prices of food and labor increase <u>alot without markets</u> because farmers perceive more serious labor & food scarcities than external (e.g., government) viewers

B. Increase in the price of manufactured good

- With market failure there's less incentive to generate cash → grow more food, less cash crop
- "Devalorises" cash income

C. Monetary head tax

- Much more severe negative impact on monetized (mkt) goods consumption
- Production of cash crop increases when no food or labor markets exist

D. Productivity gains in food crops (i.e., technical change)

(1) No market failure

- Substitute from cash crop to food crop production
- MPL ↑ → more labor used
- Y ↑ → more leisure, more hiring in of labor, more consumption

(2) Market failure

- Less resources (esp. labor) needed to produce food for the family
- This frees up resources for cash crop production

E. Conclusion

- Opening markets for food will lead to more emphasis on food crop production
- Interplay between market access, technology adoption and cash crop production.